Skip to contents

Zhang et al. (2021)'s test for testing equality of two-sample high-dimensional mean vectors without assuming that two covariance matrices are the same.

Usage

tsbf_zzgz2021(y1, y2)

Arguments

y1

The data matrix (p by n1) from the first population. Each column represents a \(p\)-dimensional observation.

y2

The data matrix (p by n2) from the first population. Each column represents a \(p\)-dimensional observation.

Value

A (list) object of S3 class htest containing the following elements:

p.value

the p-value of the test proposed by Zhang et al. (2021).

statistic

the test statistic proposed by Zhang et al. (2021).

beta

parameter used in Zhang et al. (2021)'s test.

df

estimated approximate degrees of freedom of Zhang et al. (2021)'s test.

Details

Suppose we have two independent high-dimensional samples: $$ \boldsymbol{y}_{i1},\ldots,\boldsymbol{y}_{in_i}, \;\operatorname{are \; i.i.d. \; with}\; \operatorname{E}(\boldsymbol{y}_{i1})=\boldsymbol{\mu}_i,\; \operatorname{Cov}(\boldsymbol{y}_{i1})=\boldsymbol{\Sigma}_i,i=1,2. $$ The primary object is to test $$H_{0}: \boldsymbol{\mu}_1 = \boldsymbol{\mu}_2\; \operatorname{versus}\; H_{1}: \boldsymbol{\mu}_1 \neq \boldsymbol{\mu}_2.$$ Zhang et al.(2021) proposed the following test statistic: $$T_{ZZGZ} = \frac{n_1n_2}{n} \|\bar{\boldsymbol{y}}_1 - \bar{\boldsymbol{y}}_2\|^2,$$ where \(\bar{\boldsymbol{y}}_{i},i=1,2\) are the sample mean vectors. They showed that under the null hypothesis, \(T_{ZZGZ}\) and a chi-squared-type mixture have the same normal or non-normal limiting distribution.

References

Zhang J, Zhou B, Guo J, Zhu T (2021). “Two-sample Behrens-Fisher problems for high-dimensional data: A normal reference approach.” Journal of Statistical Planning and Inference, 213, 142--161. doi:10.1016/j.jspi.2020.11.008 .

Examples

set.seed(1234)
n1 <- 20
n2 <- 30
p <- 50
mu1 <- t(t(rep(0, p)))
mu2 <- mu1
rho1 <- 0.1
rho2 <- 0.2
a1 <- 1
a2 <- 2
w1 <- (-2 * sqrt(a1 * (1 - rho1)) + sqrt(4 * a1 * (1 - rho1) + 4 * p * a1 * rho1)) / (2 * p)
x1 <- w1 + sqrt(a1 * (1 - rho1))
Gamma1 <- matrix(rep(w1, p * p), nrow = p)
diag(Gamma1) <- rep(x1, p)
w2 <- (-2 * sqrt(a2 * (1 - rho2)) + sqrt(4 * a2 * (1 - rho2) + 4 * p * a2 * rho2)) / (2 * p)
x2 <- w2 + sqrt(a2 * (1 - rho2))
Gamma2 <- matrix(rep(w2, p * p), nrow = p)
diag(Gamma2) <- rep(x2, p)
Z1 <- matrix(rnorm(n1*p,mean = 0,sd = 1), p, n1)
Z2 <- matrix(rnorm(n2*p,mean = 0,sd = 1), p, n2)
y1 <- Gamma1 %*% Z1 + mu1%*%(rep(1,n1))
y2 <- Gamma2 %*% Z2 + mu2%*%(rep(1,n2))
tsbf_zzgz2021(y1, y2)
#> 
#> 
#> 
#> data:  
#> statistic = 73.176, df = 24.2258, beta = 2.8975, p-value = 0.4046
#>