Zhang et al. (2022)'s test for general linear hypothesis testing (GLHT) problem for high-dimensional data under heteroscedasticity.
Arguments
- Y
A list of \(k\) data matrices. The \(i\)th element represents the data matrix (\(p\times n_i\)) from the \(i\)th population with each column representing a \(p\)-dimensional observation.
- G
A known full-rank coefficient matrix (\(q\times k\)) with \(\operatorname{rank}(\boldsymbol{G})< k\).
- n
A vector of \(k\) sample sizes. The \(i\)th element represents the sample size of group \(i\), \(n_i\).
- p
The dimension of data.
Value
A (list) object of S3
class htest
containing the following elements:
- p.value
the \(p\)-value of the test proposed by Zhang et al. (2022)
- statistic
the test statistic proposed by Zhang et al. (2022).
- beta
the parameters used in Zhang et al. (2022)'s test.
- df
estimated approximate degrees of freedom of Zhang et al. (2022)'s test.
Details
Suppose we have the following \(k\) independent high-dimensional samples: $$ \boldsymbol{y}_{i1},\ldots,\boldsymbol{y}_{in_i}, \;\operatorname{are \; i.i.d. \; with}\; \operatorname{E}(\boldsymbol{y}_{i1})=\boldsymbol{\mu}_i,\; \operatorname{Cov}(\boldsymbol{y}_{i1})=\boldsymbol{\Sigma}_i,i=1,\ldots,k. $$ It is of interest to test the following GLHT problem: $$H_0: \boldsymbol{G M}=\boldsymbol{0}, \quad \text { vs. } \; H_1: \boldsymbol{G M} \neq \boldsymbol{0},$$ where \(\boldsymbol{M}=(\boldsymbol{\mu}_1,\ldots,\boldsymbol{\mu}_k)^\top\) is a \(k\times p\) matrix collecting \(k\) mean vectors and \(\boldsymbol{G}:q\times k\) is a known full-rank coefficient matrix with \(\operatorname{rank}(\boldsymbol{G})<k\).
Zhang et al. (2022) proposed the following test statistic: $$ T_{ZZG}=\|\boldsymbol{C} \hat{\boldsymbol{\mu}}\|^2, $$ where \(\boldsymbol{C}=[(\boldsymbol{G D G}^\top)^{-1/2}\boldsymbol{G}]\otimes\boldsymbol{I}_p\) with \(\boldsymbol{D}=\operatorname{diag}(1/n_1,\ldots,1/n_k)\), and \(\hat{\boldsymbol{\mu}}=(\bar{\boldsymbol{y}}_1^\top,\ldots,\bar{\boldsymbol{y}}_k^\top)^\top\) with \(\bar{\boldsymbol{y}}_{i},i=1,\ldots,k\) being the sample mean vectors.
They showed that under the null hypothesis, \(T_{ZZG}\) and a chi-squared-type mixture have the same normal or non-normal limiting distribution.
References
Zhang J, Zhou B, Guo J (2022). “Linear hypothesis testing in high-dimensional heteroscedastic one-way MANOVA: A normal reference \(L^2\)-norm based test.” Journal of Multivariate Analysis, 187, 104816. doi:10.1016/j.jmva.2021.104816 .
Examples
set.seed(1234)
k <- 3
p <- 50
n <- c(25, 30, 40)
rho <- 0.1
M <- matrix(rep(0, k * p), nrow = k, ncol = p)
avec <- seq(1, k)
Y <- list()
for (g in 1:k) {
a <- avec[g]
y <- (-2 * sqrt(a * (1 - rho)) + sqrt(4 * a * (1 - rho) + 4 * p * a * rho)) / (2 * p)
x <- y + sqrt(a * (1 - rho))
Gamma <- matrix(rep(y, p * p), nrow = p)
diag(Gamma) <- rep(x, p)
Z <- matrix(rnorm(n[g] * p, mean = 0, sd = 1), p, n[g])
Y[[g]] <- Gamma %*% Z + t(t(M[g, ])) %*% (rep(1, n[g]))
}
G <- cbind(diag(k - 1), rep(-1, k - 1))
glhtbf_zzg2022(Y, G, n, p)
#>
#>
#>
#> data:
#> statistic = 192.13, df = 68.7634, beta = 2.7436, p-value = 0.4348
#>